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We derive the continuous limits of kinetic equations for spatially discrete
systems generated by the motion of a particle in a random array of scatterers.
The type of scatterer at a vertex changes after the r-th visit of the particle to this
vertex, where 1 [ r [.. Such deterministic cellular automata belong to the class
of walks in rigid environments. It has been recently shown that they form the
simplest dynamical models with sub-diffusive, diffusive and super-diffusive
behaviour. Due to the deterministic character of the dynamics, the continuous
limit equations obtained for these models are of the Euler type rather than the
diffusive type. The reason for that is that the fluctuations in these models are
relatively small and there is no scaling of probabilities similar, for example, to
those in the case of biased random walk, that can account for them.

KEY WORDS: Lorentz lattice gas; first visit equation; oscillation; propagation;
rigid environment.

1. INTRODUCTION

Walks in rigid environments (1, 2) belong to the class of deterministic walks in
random environments which includes systems generated by the deterministic
motion of a particle in an environment of scatterers randomly distributed
over the vertices of some graph G. The dynamics of such systems allows for
the particle’s feedback on the environment. In other words, the passage of
a particle can modify the type of scatterer located at the visited vertex,
according to some deterministic rule.
The basic characteristic of a rigid environment is the function

r: GQ Z+. The value r(g) of this function at a given vertex g ¥ G is called



the local rigidity of the environment at g. This means that the scatterer
located at g changes its type after the r(g)-th visit of the particle to that
vertex. In the case when r(g)=. for all g ¥ G, the scatterers do not change
their type. This case corresponds to the deterministic Lorentz lattice gas. (3)

Walks in rigid environments have been extensively studied in various fields
including computer networks, evolutionary dynamics etc., and they served
as a paradigm for signal propagation in random media. (4–7)

In this paper we consider systems with one moving particle. It has
been shown (1, 2) that one particle walks in rigid environments are completely
solvable in the case when G is a one-dimensional lattice Z and the rigidity
of the environment is constant: r(z)=r for all z ¥ Z. There are four types
of scatterers on Z: forward- and back-scatterers which respect the reflection
symmetry of Z, and right- and left-rotators which do not. It has also been
demonstrated in refs. 1 and 2 that walks in rigid environments, formed by
either the first or the second pair of scatterers on Z, can exhibit sub-diffu-
sive, diffusive or super-diffusive behaviour. (The last case corresponds to
the ultimate propagation on Z with random velocity. (8, 1)) In fact, these
systems can be viewed as the simplest, completely solvable, dynamical
models of sub-/super-/diffusive motion.
In this paper we study continuous limits of these models and derive

the corresponding kinetic equations. The results show that in the limit the
deterministic dynamics prevails over random fluctuations caused by the
randomness in the initial distribution of scatterers. This should be con-
trasted, for example, with the continuous limit of the biased random walk
on Z where the diffusive behaviour emerges on top of the propagation via a
proper scaling of transition probabilities (see, e.g., ref. 9). In the walks in
rigid environments examined here, no such scaling exists. The reason for
that is the character of evolution in these models. At any moment of time,
the environment consists of two parts: the region already visited by the
particle and its complement. The deterministic motion in the visited region
is intermittent with random excursions to its complement. By virtue of such
excursions the deterministic (already visited) region is growing and, conse-
quently, periods of deterministic motion grow as well, which makes
random fluctuations relatively small.

2. WALKS IN RIGID ENVIRONMENTS

We now give a formal definition of a walk in a rigid environment. (1, 2)

Let G be a simple regular undirected infinite graph. For a given vertex g,
a scatterer is defined as a map sg: Ain(g)Q Aout(g) from the set Ain(g) of
all incoming edges of g to the set Aout(g) of all edges originating at g.
Since G is undirected, the sets Ain(g) and Aout(g) can be identified.
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We denote as S the set of all possible scatterers on G. It is easy to see that
card S=dd where d is the degree of the regular graph G.
A walk in a rigid environment is a dynamical model that is described

by the following characteristics:

– a graph G;

– a subset Ŝ ı S of the scatterers allowed in the model;

– a function r: GQ Z+ called the rigidity of the environment;

– a collection of functions {eg}g ¥ G where each eg: ŜQ Ŝ defines the
‘‘flipping rule’’ according to which the scatterer at g changes its type (flips).
In other words, it defines the order in which scatterers of different types
appear at g.

To say that the environment has constant rigidity r means that the
scatterer at vertex g ¥ G changes its type (flips) after r visits of the particle
to this vertex. We define the index i of the scatterer at g as the number of
visits of the particle to g that occured since the last time when this scatterer
flipped. Hence, the state of the scatterer at vertex g at any time t is deter-
mined by two quantities: the type of the scatterer and its index. We will
define the state function g: G×ZQ Fr as:

g(g, t)=(s, i),

where (s, i) ¥ Fr, and Fr=Ŝ×Zr is the set of possible states of a scatterer
(the second factor in the product denotes the cyclic group of order r with
mod r addition). After each visit of the particle to g the state of the scat-
terer changes according to the rule given by a function f: Fr Q Fr which is
defined as:

f(s, i)=˛ (s, i+1), if 0 [ i < r−1,
(e(s), 0), if i=r−1.

In the next section we will introduce two models of walks in rigid
environments on Z.

3. FINITE-DIFFERENCE EQUATIONS

We consider the motion of a single particle on the real line R where
each integer point z ¥ R is occupied by a scatterer of some type. The scat-
terers are distributed independently over all such points. A particle is
moving with the unit speed on R, i.e., |v(t)|=1 at any moment of time t.
The velocity vector v(t) of the particle may change upon a collision with a
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scatterer. By z(t) we denote the position of the particle at time t. It makes
sense to consider a discrete version of this model. We assume that the par-
ticle is moving on a lattice, which can be identified with Z. At each integer
moment of time the particle hops from the current vertex z(t) ¥ Z to one of
its neighboring vertices changing the state of the scatterer at z(t). The
choice of neighbor is completely determined by the velocity vector of the
particle v(t) and the type of scatterer at position z(t). To distinguish
between the two moments of time just before and just after the particle’s
interaction with the scatterer we denote them by t and t+ respectively.
Formally, the dynamics of walks in rigid environments on Z can be
described by the following equations:

z(t+1)=z(t)+v(t),

v(t+1)=ws(t)(v(t)),

g(z, t+1)=˛g(z, t) if z ] z(t),
f(g(z(t), t)) if z=z(t).

Here, the function ws(t) is completely defined by the type of scatterer s(t) at
position z(t) and can be written explicitly for each model.
The set S of all possible scatterers on Z consists of the following four

types: forward- and back-scatterers, and right and left rotators. The
forward scatterer corresponds to the trivial case when the velocity vector of
the particle does not change upon a collision, i.e., v(t+)=v(t). The back-
scatterer changes the velocity vector of the particle to the opposite, i.e.,
v(t+)=−v(t). The right and left rotators send the scattered particle to the
right or to the left respectively, i.e., v(t+)=1 for the right rotator and
v(t+)=−1 for the left rotator. The first pair of scatterers will be referred
to as non-oriented scatterers while the second pair as oriented scatterers.
In this paper we will examine both the model with oriented scatterers
(OS-model ) and the model with non-oriented scatterers (NOS-model ). In
either case the environment is assumed to have constant rigidity r \ 1. (1)

We will derive probabilistic equations governing the dynamics of the
particle in OS- and NOS-models and find the continuous limits of those
equations. Given that the inverse dynamics is generally not defined and, in
this case only the NOS-model has well-defined dynamics for all t ¥ Z, we will
only consider t \ 0. We will assume that the particle starts at the origin with
v(0)=v(0+)=1, and all scatterers on Z have index 0 at time t=0. We
denote as f(z, t) the probability of finding the particle at position z for the
first time at time t. Then we can write down the formula of total probability:

f(z+1, t+1)=C
s
asf(z, t− ts) (1)
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where as is the probability that the particle propagates from z to z+1 in
ts+1 time steps, ; s as=1, and the summation is performed over all pos-
sible time delays ts (i.e., all possible loops that the particle can make
between two successive visits to position z). A similar equation can be
written for the propagation along the negative axis.
Let us take a closer look at the conditions under which Eq. (1) makes

sense. These conditions reflect the hybrid nature of walks in random envi-
ronments which are neither purely stochastic nor purely deterministic
systems.
At any time instant t > 0 the lattice Z can be divided into two subsets:

a subset Dt formed by all sites z ¥ Z visited by the particle to the moment t
and its complement D̄t. Note that the dynamics of the particle in Dt is
purely deterministic. To reflect this fact we will call Dt a deterministic
region. Randomness is introduced into the dynamics when the particle
visits sites in D̄t. Indeed, since the initial distribution of scatterers on Z
is random then the first visit of the particle to any site can be interpreted as
a random event. We will refer to D̄t as a random region. Initially the entire
lattice forms a random region: D̄0=Z. But once the particle starts moving,
a non-trivial deterministic region appears. Generally, D0 … D1 ı D2 ı · · ·
ı Dn ı · · · . We denote the union of all these deterministic regions as
D.=1t Dt. Then, for Eq. (1) to make sense, the following condition has to
be satisfied:

Condition I (Unboundedness). D. is unbounded, i.e., the particle
never performs periodic motion.

If this condition is not met, then at some time tg the particle starts
moving deterministically, where tg depends on the initial configuration of
scatterers. Hence, it does not make sense to speak about the probability of
finding the particle at any location for t > tg. For the two models under
study, however, the unboundedness of D. has been proven for all r <.. (1, 2)

In general, equations similar to (1) can be written for propagation
along any unbounded path on any graph satisfying the assumptions made
at the beginning of Section 2, provided that the particle visits all vertices on
this path. These equations are rather general: (1) is nothing but the formula
of total probability. Equations of this type have been derived for many
probabilistic models. For walks in rigid environments, however, only the
probability of the first visit of the particle to a site makes sense. Indeed, if
the first visit of the particle to position z occured at some tz, then for all
t > tz, z will belong to the deterministic region, and so, we can no longer
speak about the probability of finding the particle at z.
Equation (1) first appeared in ref. 10 with an additional restriction

that the sum in the r.h.s. of the equation be over a finite number of possible
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time delays. We will drop this restriction and consider a more general class
of cellular automata where the summation can be performed over an infi-
nite number of configurations.
In more general case, when the distance between neighboring sites on

R is z, and y is the elementary time step, the equation for f(z, t) reads: (10)

f(z+z, t+y)=C
s
asf(z, t− tsy). (2)

Here as is the probability that the particle propagates from z to z+z in
ts+1 time steps. Again the sum of these probabilities over all possible time
delays is 1.
These equations will serve as a basis for deriving specific equations for

each of the above models.

3.1. NOS Model. Odd Rigidity

To derive the equation governing the dynamics of the particle in the
NOS-model we need to understand what a typical trajectory of the particle
looks like. We define the state of the scatterer at position z at time t as
g(z, t)=(s, i) where s ¥ {0, 1} (0 corresponds to forward-scatterer and 1 to
back-scatterer) and 0 [ i < r.
The finite-difference equation for r=1 has been written in ref. 8. We

will derive it here for the sake of completeness. Note that in this case the
notion of the index of a scatterer is redundant because the scatterer flips
every time it is hit by the particle. Thus, the state of the scatterer is deter-
mined only by its type, i.e., g(z, t)=s. Let us suppose now that the particle
arrives at position z at time t. If g(z, t)=0 then the particle will continue
moving with the same velocity v(t) and arrive at z+1 at time t+1. The
state of the scatterer at z will change to to g(z, t+)=1. If g(z, t)=1 then,
at first, the particle will be reflected to position z−1 and the scatterer at
z will flip. Upon arriving at z−1, however, the particle will be reflected
back to position z. At this point the scatterer at z is in state g(z, t+2)=0.
Hence, the particle will continue moving in the positive direction and arrive
at z+1 at time t+3.
Let q denote the probability that a site is occupied by a forward scat-

terer at t=0 and p=1−q. Then the two possible time delays ts and their
probabilities as in Eq. (1) are given by:

t1=0, a1=q,

t2=2, a2=p,
(3)
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and the first visit equation reads:

f(z+1, t+1)=qf(z, t)+pf(z, t−2).

Next, we will consider the case when r > 1. Let us suppose that at time
t the particle arrives at position z for the first time. Again, there are two
possible outcomes.
If g(z, t)=(0, 0), then after the particle’s interaction with the scatterer

the state of that scatterer will change to g(z, t+)=(0, 1). The particle will
continue moving with velocity v(t) and arrive at position z+1 at time t+1.
If g(z, t)=(1, 0), then the particle will be reflected by the scatterer at

position z and start traveling in the negative direction until it collides with
another back-scatterer, say at position y < z. Upon reflection by this back-
scatterer the particle will bounce between z and y until all scatterers on the
interval (y, z) flip and assume state (1, 0). Thus, the distance between
positions z and y will be covered by the particle r−1 times. Meanwhile the
state of the scatterer at position z changes to (1, (r+1)/2). To flip this
scatterer and move to the next position on the lattice the particle has to
make additional (r+1)/2 visits to z−1. Let Tz, z+1 denote the time that it
takes the particle to propagate from z to z+1. Then the configuration of
scatterers at time t+Tz, z+1 is given by:

g(x, t+Tz, z+1)=(1, 0), y < x < z−1,

g(z−1, t+Tz, z+1)=11,
r+1
2
2 ,

g(z, t+Tz, z+1)=(0, 1).

Remark. Note that between times t and t+Tz, z+1 the scatterer at
position y is visited (r−1)/2 times. Hence, this is also the number of times
that position z−1 will be revisited by the particle if, in the course of prop-
agation, it encounters another back-scatterer.

There is one additional case that needs to be considered: when at,
t=0, the scatterers at positions 0 and 1 are in the state (1, 0). In this case,
upon arriving at z=1 for the first time at t=1 the particle will simply
bounce between 0 and 1 until both scatterers flip. It will arrive at position 2
after T1, 2=2r+1 time steps. The configuration of scatterers resulting from
the propagation of the particle from position 1 to position 2 is given by:

g(0, 1+T1, 2)=(0, 0),

g(1, 1+T1, 2)=(0, 1).
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Remark. Note that in the course of propagation, the scatterer at
position 0 is visited r times which does not follow the rule described in the
previous Remark. However this is the only exception to that rule.

We are ready now to compute the time delays ts in Eq. (1) and the
probabilities as with which they occur. We start with g(z, t)=(1, 0). Let d
be the random variable that corresponds to the distance between z and the
position y of the back-scatterer closest to z with y < z, at time t. Note that
for all z > 1 this distance is bounded from below by 2.
It follows from the above argument that the time required for the par-

ticle to propagate from z to z+1, for each d=j, is equal to

tj=(r−1) j+(r+1), j \ 2. (4)

The corresponding probabilities aj=P{d=j} can be computed as follows:

aj=P{g(z, t)=(1, f); g(z−j, t)=(1, f);

g(n, t)=(0, f), z−j < n < z}, j \ 2

=˛
P{g(z, 0)=g(z−j+1, 0)=(1, 0);

g(n, 0)=(0, 0), z−j+1 < n < z}, 2 [ j [ z−1;

P{g(z, 0)=g(1, 0)=(1, 0); g(n, 0)=g(0, 0)=(0, 0), 1 < n < z}

+P{g(z, 0)=g(0, 0)=(1, 0); g(n, 0)=(0, 0), 0 < n < z}, j=z;

P{g(z, 0)=g(z−j, 0)=(1, 0); g(n, 0)=(0, 0), z−j < n < z}

+P{g(z, 0)=g(z−j, 0)=g(0, 0)=g(1, 0)=(1, 0);

g(n, 0)=(0, 0), z−j < n < z, n ] 0, 1}, j \ z+1.

(5)

where f denotes any index between 0 and r−1.
If, on the other hand, position z is occupied by a forward scatterer at

time t, i.e., g(z, t)=(0, 0), then there is no time delay in propagation from
z to z+1. To conform to the notations used in Eq. (1) we will assign
subscript j=1 to the quantities corresponding to this case. Thus,

t1=0 (6)

and the corresponding probability is given by

a1=P{g(z, t)=(0, f)}.
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Let us recall that q is the probability that a site is occupied by a
forward scatterer at time t=0 and p=1−q. Then Eq. (5) allows us to
compute probabilities aj in terms of these two quantities:

aj=˛
q, j=1;

p2q j−2, 2 [ j [ z−1;

p2q j−1+p2q j−1=2p2q j−1, j=z;

p2q j−1+p4q j−3=p2(p2+q2) q j−3, j \ z+1.

(7)

It is easy to verify that ; j aj=1.
Now, combining Eqs. (1), (6), and (7) we can write out the first-visit

equation for the NOS-model with odd rigidity:

f(z+1, t+1)=qf(z, t)+C
.

j=2
ajf(z, t− tj); (8)

where time delays tj are given by formula (4) and the corresponding prob-
abilities aj by formula (7).

3.2. NOS Model. Even Rigidity

Of all models considered in this paper, this is the most complicated
one in terms of the particle’s dynamics. We will describe a typical trajectory
of the particle for a given initial configuration of scatterers. Let di,
i=1, 2,... denote the positions of back-scatterers on R+ at time t=0. We
assume d0=0. Let ti be the times of the first visits of the particle to posi-
tions di, i=1, 2,... . As before, g(z, t)=(s, i) shall denote the state of the
scatterer at position z at time t.
We will derive the first-visit equation for z > 0. The case z < 0 can be

considered in a similar way. Let us suppose that at time t the particle
arrives at position z for the first time.
If g(z, t)=(0, 0), then after the particle’s interaction with the scatterer

the state of the scatterer will change to g(z, t+)=(0, 1). The particle will
continue moving with velocity v(t) and arrive at position z+1 at time t+1.
If g(z, t)=(1, 0), i.e., there is a back-scatterer at z then, according to

the notations introduced earlier, z=dl and t=tl for some l, 1 [ l [ z. The
precise trajectory of the particle depends on several factors including the
type of scatterer at the origin at time t=0. We will describe the typical
trajectory in the case g(0, 0)=(0, 0). (The other case could be considered
as well, however this factor does not affect the character of the particle’s
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motion, nor does it change the final equation.) In the course of propaga-
tion from z to z+1 the particle will perform a series of steps.
Let us denote as yk the position of the back-scatterer closest to −k+1

such that yk < −k+1. Then during the first step the particle will bounce
on the interval [ydl−1 , z] covering the length of [0, z] (r−1) times and the
length of [ydl−1 , 0] r times.
In step 2 it will bounce on the intervals [0, 1] and [−1, 2] covering

the length of [0, 1] 2r times and the length of [−1, 2] r times.
In each subsequent step i the particle will bounce on intervals

[0, 1], [−1, 2],..., [−i, i+1], i < z−1 covering the length of [0, 1] 2r
times and the lengths of all other intervals r times.
In (z−1)-st step, the behaviour of the particle will depend on the state of

the scatterer at position −z+1. If g(−z+1, tl)=(1, 0) or (1, r/2) then during
this step it will bounce on [0, 1],..., [−z+1, z] following the above pattern.
If g(−z+1, tl)=(0, 0) then it will bounce on [0, 1],..., [−z+2, z−1],
[yz, z] instead, where yz is defined as above.
After this, the particle will return to z and repeat this series of steps

once again with minor or no changes to all but the last step. The sequence
of the intervals involved in this last step will again depend on g(−z+1, tl).
If g(−z+1, tl)=(1, 0) or (0, 0) then the particle will bounce on intervals
[0, 1], [−1, 2],..., [−z+1, z], and if g(−z+1, tl)=(1, r/2) then it will
bounce on [0, 1],..., [−z+2, z−1], [yz, z]. Upon finishing this step the
particle will move to z+1.
To compute the delay times ts, notice that during its propagation from

z to z+1 the particle covers the length of each interval [−i+1, i] exactly
(2r) 2z−i times for i=2,..., z and the length of [yz, −z+1] r times. The
length of [0, 1] will be covered 2;z

i=2 (2r) 2
z−i=4r(2z−1−1) times. Let d

be the random variable corresponding to the distance between −z+1 and yz.
Then, for any d=j the delay time tj can be computed as follows:

tj=C
z

i=2
2r2z−i(2i−1)+4r(2z−1−1)+rj

=r(j+7 ·2z−4z−10), j \ 0. (9)

It follows from our discussion above that time delay tj, j \ 1 occurs if
the distance between −z+1 and yz is equal to j and g(−z+1, t) ] (1, 0),
whereas time delay t0 occurs when g(−z+1, t)=(1, 0). If we denote the
probability of the event that g(−z+1, t)=(1, 0) as P(1, 0) then

a0=pP(1, 0)

aj=p2q j−1(1−P(1, 0)), j \ 1
(10)
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To compute these probabilitites we need to compute the value of P(1, 0). To
do so we will first compute it for a given configuration of scatterers at time
t=0 and then sum over all possible configurations with appropriate
weights. Let P l

(1, 0)(d1,..., dl) denote the conditional probability of the event
that g(−z+1, t)=(1, 0) given that at t=0 positions di, 1 [ i [ l are
occupied by back-scatterers, and z=dl, t=tl for some 1 [ l [ z. The scat-
terer at position −z+1 will be in state (1, 0) at time t in one of the two
cases:

– if g(−z+1, 0)=(0, 0) and the scatterer has been visited by the par-
ticle some time before tl. Note that it could have been visited during any of
the time intervals [ti−1, ti), 2 [ i [ l (t1=1 for any configuration of scat-
terers, hence, the particle does not visit any sites outside [0, 1] during
interval [t0, t1)).

– if g(−z+1, 0)=(1, 0) and the scatterer has not been visited before
time tl;

The probability of the event that (−z+1) was visited during time
interval [ti−1, ti) is equal to:

P{g(k, 0)=(0, 0), −di−1 [ k [ −dl+2; g(−di−1+1, ti−1) ] (1, 0)}

=qdl −di−1 −1(1−P i−1
(1, 0)(d1,..., di−1)).

Hence, the total probability Pv(d1,..., dl) of the event that the scatterer at
(−z+1) has been visited before time tl can be computed as a sum of the
above probabilities over all time intervals [ti−1, ti):

Pv(d1,..., dl)=C
l

i=2
qdl −di−1 −1(1−P i−1

(1, 0)(d1,..., di−1)).

Now, the probability P l
(1, 0)(d1,..., dl) can be computed as follows:

P l
(1, 0)(d1,..., dl)=qPv(d1,..., dl)+p(1−Pv(d1,..., dl))

=p+(q−p) C
l

i=2
qdl −di−1 −1(1−P i−1

(1, 0)(d1,..., di−1)),

2 [ l [ z,

P1
(1, 0)(d1)=p.

(11)
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This is a recursive equation on P l
(1, 0)(d1,..., dl). To solve it, it is

convenient to define a new quantity Bi=q−di −1(1−P
i
(1, 0)(d1,..., di)). The

equation for Bl follows immediately from (11):

Bl=q−dl+1
p
q
−12 C

l−1

i=1
Bi,

B1=q−d1

and its solution is given by:

Bl=q−dl+1
p
q
−12 C

l−1

i=1

1p
q
2 l− i−1 q−di.

Going back to P l
(1, 0)(d1,..., dl) we get:

P l
(1, 0)(d1,..., dl)=˛

p, l=1,

p−(p−q) C
l

i=2

1p
q
2 l− i qdl −di−1, 2 [ l [ z.

(12)

Finally, to compute P(1, 0) we will sum the probabilitites given by (12)
over all possible configurations of scatterers, i.e.:

P(1, 0)=C
z

l=1
p lqz−l C

1 [ d1 < · · · < dl−1 < dl=z
P l
(1, 0)(d1,..., dl)

=p2+
q−p
2p(1+q)

(p+2q2z+1−(1+q)(p2+q2)z). (13)

In the case g(z, t)=(0, 0) there is no time delay and the corresponding
probability equals the probability of the event that g(z, 0)=(0, 0). In order
to conform to the notations used in Eq. (1), we will assign index (−1) to the
quantities corresponding to this case, hence:

t−1=0,

a−1=q.
(14)

It is easy to verify that a−1+; j \ 0 aj=1.
We are now ready to write the first visit equation for the NOS-model

with even rigidity for z > 0. Combining Eqs. (1), (10), and (14) we get:

f(z+1, t+1)=qf(z, t)+pP(1, 0)f(z, t− t0)

+p2(1−P(1, 0)) C
.

j=1
q j−1f(z, t− tj), (15)
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where probability P(1, 0) is given by (13) and time delays tj by (9). A similar
equation can be obtained for z < 0.

3.3. OS Model

We begin with the description of a typical trajectory of the particle in
the OS-model. We will use the same notation g(z, t)=(s, i) for the state of
the scatterer occupying position z, at time t. Here s ¥ {0, 1} (now 0 corre-
sponds to a right rotator, and 1 to a left rotator) and i denotes the index of
the scatterer. Let Lz be the random variable corresponding to the number
of left rotators on the interval [1, z] at time t=0, if z > 0, and Rz be the
random variable corresponding to the number of right rotators on the
interval [z, 0], if z [ 0.
First we consider the case when z > 0. Let us suppose now that at time

t the particle arrives at position z for the first time. There are two possible
outcomes.
If g(z, t)=(0, 0), then after the particle’s interaction with the scatterer

the state of the scatterer will change to g(z, t+)=(0, 1). The particle will
continue moving with velocity v(t) and arrive at position z+1 at time t+1.
If g(z, t)=(1, 0), then the particle will be reflected by the scatterer

at z. Due to the presence of the right rotator at z−1, the particle will
bounce between positions z and z−1 until this rotator flips. By this time,
the particle will have covered the distance between these two positions
(2r−1) times, and will be located at z−1. Thus, it will be sent further to
the left. A similar process will take place on the intervals [z−2, z−1],...,
[1, 2]. After returning to position 1, it will be scattered to the left once
again, where it will travel to the nearest position y [ 0 with Ry=Lz and
g(y, t)=(0, 0). Since y is occupied by the right rotator the particle will be
reflected to the right. Next, it will bounce on each of the intervals
[y, y+1], [y+1, y+2],..., [0, 1] in the same way it did on the positive
semiaxis. After returning to position 1 it will travel directly to position
z+1. If Tz, z+1 is the time that takes the particle to propagate from z to z+1
then the configuration of scatterers after Tz, z+1 time steps is given by:

g(x, t+Tz, z+1)=(1, 0), y [ x [ 0,

g(x, t+Tz, z+1)=(0, 1), 1 [ x [ z.

Note that in the course of propagation the particle covers the length of
each interval [i, i+1], y [ i [ z−1, 2r times.
Let us compute the time delays ts in Eq. (1) and their probabilities as,

starting with the case g(z, t)=(1, 0). For each Lz=l, 1 [ l [ z, let dl be the
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random variable that corresponds to the distance between position y [ 0,
such that Ry=l and g(y, 0)=(0, 0), and the origin. Note that dl \ l−1. It
follows from the observations above that the time required for the particle
to propagate from z to z+1, for each dl=j is equal to

tlj=2r(z+j), j \ l−1. (16)

The delay tlj occurs if at time t=0 there were exactly l−1 right scatterers
on the interval [−(j−1), 0] and g(−j, 0)=(0, 0). There are C l−1j such
configurations for each l. The probability of the event that Lz=l is equal
to the probability that there were exactly l−1 left scatterers on the interval
[1, z−1] at t=0 and g(z, 0)=(1, 0). If q is the probability that a site is
occupied by a right rotator at time t=0 and p=1−q, then the probability
of delay tlj is given by

alj=(C
l−1
z−1p

lqz−l)(C l−1j q
lp j+1−l), 1 [ l [ z, j \ l−1. (17)

In order to be consistent with the notations used in equation (1) we
assign index s=0 to the quantities associated with the case when g(z, t)=
(0, 0). Then

t0=0, and a0=q. (18)

It can be verified that a0+;z
l=1 ; j \ l−1 alj=1.

Now, we can combine Eqs. (1) and (16)–(18) to write the first-visit
equation for the OS-model for z > 0:

f(z+1, t+1)=qf(z, t)+C
z

l=1
C
.

j=l−1
C l−1z−1C

l−1
j q

zp j+1f(z, t−2r(z+j)). (19)

Changing the order of summation and computing the internal sum in
the resulting equation reduces (19) to:

f(z+1, t+1)=qf(z, t)+1q
p
2z C

.

k=z
Cz−1k−1p

k+1f(z, t−2rk), (20)

where the new index of summation k is related to the old index j via the
relation: k=j+z.
The equation for z [ 0 can be obtained in the same way as it was done

for positive z and reads:

f(z−1, t+1)=pf(z, t)+1p
q
2 |z|+2 C

.

k=|z|+2
C |z|+1k−1 q

k+1f(z, t−2rk). (21)
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4. CONTINUOUS LIMITS

Let us consider Eq. (2), which is a slightly more general version of
Eq. (1) where the distance between neighboring sites on R is z and the
elementary time step is y. The distribution function of time delays in the
model described by this equation, allows us to define the following two
quantities: (11) the average displacement time (the average time taken by the
particle to perform a diplacement from z to z+z)

OtDP=C
s
as(ts+1) y=y(OtsP+1),

and the variance

Var(tD)=O(ts+1)2P y2−OtDP2=y2(Ot
2
sP−OtsP

2).

In order to find the continuous limit of the finite-difference equation
(1) we can expand Eq. (2) in powers of z and y and then pass to the limit
z, yQ 0. The argument similar to the one used in ref. 11 shows that the
continuous limit of Eq. (1) obtained in this manner has the following form:

“zf(z, t)+
1
c
“tf(z, t)=

c

2
“
2
tf(z, t), (22)

where

1
c
= lim
zQ 0, yQ 0

OtDP
z
, c= lim

zQ 0, yQ 0

Var(tD)
z
, (23)

and the limit z, yQ 0 is subject to the condition that both c and 1/c be
finite. Note that the form of Eq. (22) does not depend on whether the
summation in (1) is performed over a finite or an infinite number of con-
figurations.

4.1. NOS Model. Odd Rigidity

The time delays tj and their probabilities aj in the model with z=1
and y=1 have been computed in the previous section. In order to obtain
the corresponding quantities for the case of arbitrary z and y let us make
two observations. First, the quantities tj computed earlier represent the
number of time steps that it takes the particle to flip the scatterer at posi-
tion z and start moving to the next position on the lattice. Thus, the values
of tj, j \ 1 do not depend on the value of the elementary time step y and,
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therefore, will be given by formulae (4) and (6) for any y. Second, for r=1
the probabilities aj given by (3) do not depend on the distance between
neighboring sites. Hence they will also stay the same after the rescaling.
For the case r > 1, however, we need to replace z with N=z/z in the
formula for aj, as N represents the number of lattice unit lengths between
the site with coordinate z and the origin for an arbitrary z. The values of aj
for this case are given by

aj=˛
q, j=1;

p2q j−2, 2 [ j [N−1;

p2q j−1+p2q j−1=2p2q j−1, j=N;

p2q j−1+p4q j−3=p2(p2+q2) q j−3, j \N+1.

Note that in the limit zQ 0, N becomes unbounded.
The computations of OtDP and Var(tD) are fairly straighforward and

shall be omitted here for the sake of brevity. The results are presented
below:

OtDP=y(r(1+2p)+O(NqN)),

Var(tD)=y2
q
p
((r(1+2p)−1)2+(r−1)2+O(NqN)), as NQ..

These formulae are valid for any odd r \ 1.
This allows us to compute c and c in Eq. (22). Substituting the values

obtained for OtDP and Var(tD) into (23) and taking the limit zQ 0, yQ 0
yields:

1
c
=r(1+2p) lim

zQ 0, yQ 0

y

z
,

c=
q
p
((r(1+2p)−1)2+(r−1)2) lim

zQ 0, yQ 0

y2

z
.

The condition of boundedness of these two quantities requires that
limzQ 0, yQ 0(y/z) be finite. We choose

lim
zQ 0, yQ 0

y

z
=1

to preserve the scaling factor of 1 obtained in the case when z=y=1.
Clearly c=0 under this condition, so the continuous limit of Eq. (8) reads:

“zf(z, t)+r(1+2p) “tf(z, t)=0. (24)
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This equation describes propagation on the real line with speed
(r(1+2p))−1. Since the expected value of the particle’s position is propor-
tional to time its second moment grows quadratically. Therefore, in the
continuous limit, the NOS-model with odd rigidity exhibits a super-diffu-
sive behaviour.

4.2. NOS Model. Even Rigidity

The time delays tj and probabilitites aj with which they occur for the
case of an arbitrary z and y can be obtained from (9)–(10) by substituting z
in those formulae with N=z/z. Hence, for z > 0 we have

tj=˛
0, j=−1;
r(j+7 ·2N−4N−10), j \ 0,

aj=˛
q, j=−1
pP(1, 0), j=0
p2q j−1(1−P(1, 0)), j \ 1

where

P(1, 0)=p2+
q−p
2p(1+q)

(p+2q2N+1−(1+q)(p2+q2)N).

Using these formulae we can compute the average displacement time
and its variance:

OtDP=y(7rp 2N+O(N)),

Var(tD)=y2(49r2pq 22N+O(N2N)).

Dividing these by z and taking the limit zQ 0, yQ 0 we find the coeffi-
cients in Eq. (22):

1
c
=7rp lim

zQ 0, yQ 0

2z/zy
z
,

c=49r2p q lim
zQ 0, yQ 0

22z/zy2

z
.

The condition of boundedness of these quantities requires that both limits
in the above expressions be finite. Since z enters the above limits exponen-
tially we will choose

lim
zQ 0, yQ 0

2z/zy
z
=2z
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or, equivalently, y=O(z 2−1/z). Under this condition c=0, 1/c=7rp2z and
the continuous limit of Eq. (15) for z > 0 reads:

fz(z, t)+7rp 2zft(z, t)=0. (25)

Similarly, one can show that the continuous limit of the kinetic equa-
tion corresponding to the case z [ 0 is given by

fz(z, t)−7rp 2 |z|ft(z, t)=0. (26)

This equation can also be obtained by changing the sign of z in Eq. (25)
to the opposite which reflects the symmetry of the particle’s motion with
respect to the origin.
Equations (25) and (26) can be combined into a single equation valid

for all z ¥ Z as follows:

fz(z, t)+sgn(z) 7rp 2 |z|ft(z, t)=0. (27)

It can be shown that the second moment of the particle’s position
in the process described by (27) grows logarithmically with time. Hence,
the continuous limit of the NOS-model with even rigidity exhibits a sub-
diffusive behaviour which is somewhat similar to that of the Ornstein–
Uhlenbeck process.

4.3. OS Model

The delay times tlj and their probabilities alj for the case when the
elementary lattice length is z and elementary time step is y can again be
obtained by replacing z with N=z/z in the expressions derived in the pre-
vious section. Hence, for z > 0 we have:

3 t0=0,
tlj=2r(N+j), 1 [ l [ z, j \ l−1,

and

3a0=q,
alj=C

l−1
N−1C

l−1
j q

Np j+1 1 [ l [ z, j \ l−1.

Note that, as before, in the limit zQ 0, N becomes unbounded.
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By straightforward computation we obtain the following formulae for
OtDP and Var(tD):

OtDP=y 12r
p
q
N+12 ,

Var(tD)=4y2 1
p
q
N2+N 1p

q
222 .

Now, dividing OtDP and Var(tD) above by z and taking the limit zQ 0,
yQ 0 we get:

1
c
=2r

p
q
z lim
zQ 0, yQ 0

y

z2
,

c=4r2
p
q
z2 lim
zQ 0, yQ 0

y2

z3
.

For these quantities to stay bounded, both of the limits above must be
finite. Hence we will require that

lim
zQ 0, yQ 0

y

z2
=1. (28)

Under this condition c=0 and the expression for 1/c simplifies to:

1
c
=2r

p
q
z. (29)

Substituting 1/c given by (29) and c=0 into (22) we obtain the con-
tinuous limit of Eq. (20):

fz(z, t)+2r
p
q
zft(z, t)=0. (30)

Similarly, the continuous limit of Eq. (21) reads

fz(z, t)−2r
q
p
zft(z, t)=0. (31)

The above two equations can be combined into a single equation valid
for all z ¥ Z:

fz(z, t)+2r 1
p
q
2 sgn(z) |z| ft(z, t)=0. (32)
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In the model described by this equation the second moment of the par-
ticle’s position grows linearly with time. Hence in the continuous limit the
OS-model exhibits a diffusive behaviour.

5. CONCLUDING REMARKS

As we mentioned in the Introduction, deterministic walks in random
environments are generated by two processes: the deterministic motion in
the region Dt formed by all vertices visited by the particle to the moment t,
and a random process of propagation into the complement D̄t of this
region. Note that in general this region changes with time. Equation (1) is a
general equation that describes the motion of the boundary of this deter-
ministic region. The models considered in this paper demonstrate sub-dif-
fusive, diffusive and super-diffusive types of behaviour for the boundary
that consists of only two points.
It has been stated in ref. 11 that propagation occurs only if the sum in

Eq. (1) has a finite number of terms, and that this condition guarantees the
existence of a blocking mechanism responsible for the propagation.
However, the phenomenon of propagation occurs as well if the sum in
(1) contains an infinite number of terms. In fact, the NOS-model with an
odd rigidity (1) provides a counterexample to that statement. This model
also demonstrates that the blocking mechanism can exist when the sum in
(1) contains an infinite number of terms.
Note that Eq. (1) is valid for any dimension. Indeed, we can consider

an infinite ordered set of vertices V such that V 5 Dt has only one con-
nected component for any t \ 0, i.e., the boundary “(V 5 Dt) ¥ “Dt consists
of two points. Then the validity of (1) for propagation on Z follows tri-
vially.
The deterministic character of motion inside region Dt is the reason

why continuous limits of the kinetic equations for all of the models
explored in this paper contain only the propagation term. Indeed, the
motion of the particle inside the deterministic region Dt has no fluctuations
and the fluctuations on the boundary “Dt generated by random distribu-
tion of scatterers outside of Dt are relatively small. This situation should be
compared with the biased random walk (see, e.g., ref. 9) whose continuous
limit contains a fluctuation term due to the pure randomness of the corre-
sponding model. Random walks allow for an appropriate scaling of prob-
abilities of transitions (9) while no such scaling exists for deterministic walks
in random environments.

924 Bunimovich and Khlabystova



REFERENCES

1. L. A. Bunimovich, Physica A 279:169 (2000).
2. L. A. Bunimovich, Asterisque (to be published).
3. T. W. Ruigrok and E. G. D. Cohen, Phys. Lett. A 133:435 (1988).
4. M. Delorne and J. Mazoyer, Cellular Automata (Kluwer Academic Publishers, Dordrecht,
1999).

5. Special Issue on general physical systems and the emergence of physical structures from
information theory, Int. J. Gen. Syst. 27:1 (1998).

6. C. G. Langton, Physica D 22:120 (1986).
7. A. K. Dewdney, Scientific American September:180 (1989).
8. P. Grosfils, J. P. Boon, E. G. D. Cohen, and L. A. Bunimovich, J. Stat. Phys 97:575
(1999).

9. W. Feller, An Introduction to Probability Theory and Its Application, 2nd ed. (Wiley, New
York, 1971).

10. J. P. Boon, J. Stat. Phys. 102:355 (2001).
11. J. P. Boon and P. Grosfils, http://www.arxiv.org, arXiv:cond-mat/0108420 (2001).

Walks in Rigid Environments: Continuous Limits 925


	1. INTRODUCTION
	2. WALKS IN RIGID ENVIRONMENTS
	3. FINITE-DIFFERENCE EQUATIONS
	4. CONTINUOUS LIMITS
	5. CONCLUDING REMARKS

